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Abstract. Crack formation and growth in steel bridge structural elements may be due to loading
oscillations. The welded elements are liable to internal discontinuities along welded joints and
sensible to stress variations. The evaluation of the remaining life of a bridge is needed to make
cost-effective decisions regarding inspection, repair, rehabilitation, and replacement. A steel
beam model has been proposed to simulate crack openings due to cyclic loads. Two possible
alternatives have been considered to model crack propagation, which the initial phase is based
on the linear fracture mechanics. Then, the model is extended to take into account the
elastoplastic fracture mechanic concepts. The natural frequency changes are directly related to
moment of inertia variation and consequently to a reduction in the flexural stiffness of a steel
beam. Thus, it is possible to adopt a nondestructive technique during steel bridge inspection to
quantify the structure eigenvalue variation that will be used to localize the grown fracture. A
damage detection algorithm is developed for the proposed model and the numerical results are
compared with the solutions achieved by using another well know computer code.
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1. INTRODUCTION

Fractures due fatigue develop in steel bridges as result of the repeated loading to which they
are submitted. A number of failures occurring in steel structures as bridges, offshore platforms,
ships, cranes, vehicles, aircraft and general equipments subjected to repeated loading result from
the propagation of fatigue cracks. The occurrence of cracks is more frequently in welded bridge



structures because of flaws that escaped detection and the variety of details. It is also known that
the primary factors contributing to cracking in steel bridges are: type of detail, age of the bridge,
frequency of the truck traffic, magnitude of stress range, quality of the fabricated detail and
material fracture toughness.  When a crack is found by inspection, it is important to predict
further growth in order to decide the convenient time to repair the structure (Brinckerhoff, 1993).
In order to accomplish this study, a system inspection model is developed. This model, based on
finite element analysis and linear fracture mechanic concepts, is used during a nondestructive
evaluation. In order to treat the crack identification problem, one should consider the fact that a
crack formed in an element introduces a local stiffness reduction, which modify the dynamic
behavior of the structure.  In this paper, the problem of crack detection is formulated with
reference to a simply supported beam and it is also assumed that the crack occurs in the opening
mode (first mode of fracture). Linear elastic fracture mechanic is here employed to describe the
initiation and the development of the fatigue crack in the steel beam. Furthermore, the results
obtained in studies of various parameters that have an influence on the damage detection are
given.

2. MATHEMATICAL MODEL AND FINITE ELEMENT ANALYSIS APPROACH

Let us consider the case of a beam with a discrete single crack (Mode I) at the centre.  The
beam, characterised by a constant cross section A and moment of inertia Io, is loaded by moments
M and axial force N applied at its ends. Let the displacement and rotation due to existence of the
crack be δ and θ (see Fig. 1).

It is well known that, The fatigue crack growth rate depends on the magnitude of the stress
range σ∆ , the crack length a and the material properties. Both, the stress range and the crack
length, are used to compute stress intensity factor range IK∆ . Then, the fatigue crack growth rate,

da/dN, is related to IK∆  by the empirical relationship proposed by Paris-Erdogan (Paris &
Erdogan, 1960):
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where N is the number of cycles and C, m are constants related with material properties and
environments. Once a fatigue crack has initiated in a structure, the remaining life can be predicted
by rearranging and integrating Eq.1 between the limits of initial and final crack lengths ai and af

(point where Kmax = KIc):

In some complex situations due to geometry, such as I – sections, or to non-uniform growth of
plane cracks one can better express the above law in term of energy release rate G instead of
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Figure1 – Single- edge cracked beam under combined axial force and bending.
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stress intensity factor KI. Recalling that, by definition, the crack-extension force G is given by the
change of the strain energy with respect to crack extension, one can also say:
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where U* is the complementary energy of the structure and A stands for the crack area.
According the Saint-Venant’s principle, the stress field is affected only in the vicinity of the
crack, ξ(a) (Fig. 2). Thus, one can assume that the value elastic modulus × inertia product, EI, at
any beam cross section is given by:
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where φ(x,a) is a function depending on the cross section shape, such that  0 ≤ φ(x,a) ≤ 1.

In this case, the bending moments distribution is given by:
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with Me = κ.Mi (κ = constant) and l is the length. The complementary energy U* of the beam
between the cracking section and one of its side can be evaluated as:
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with *
oU  representing the complementary energy and Ao the cross section in the undamaged

situation, and
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Figure 2 – Crack propagation.
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where )a,x(Nφ  depends on the cross section shape, 1)a,x(0 N ≤≤ φ .

2.1 Global stiffness matrix evaluation

It can be easily seen that the third term of Eq. 5  disappear in the case of pure bending (κ=1).
Thus, the complementary energy U* of the half beam can be computed as:
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where Uo* is the complementary energy in the uncracked situation, Me= κ. Mi (κ = constant) and:
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with 1)]a,x(1)[a,x()a,x( −φ−φ=η .

The second term of Eq. 9 can be considered as the complementary energy of a spring with
rotational stiffness related with the degrading region:
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The extension of Eq. (9) to any complex structure is straightforward, as a directly addiction
of the complementary energy referring to each segment of the beam. The global stiffness matrix
can be obtained by adding the neighbour elements whose linear system of algebraic equations are
given by:
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The coefficients given in equation (12) ([K(i)], {k(i)}, k(i),  i =1,2) are values derived for standard
beam elements. After jointing the elements sides the remaining degrees of freedom of the cracked
beam are (Fig. 3): W = [w1,w2,w3,w4,w5,w6,w7,w8]
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Figure 3 – Cracked element degrees of freedom.

2.2 Stress Intensity factor for the cracked beam

To evaluate the stress intensity factor KI it is suggested an analogy with the opening
procedure of a zipper (Deus, 1997) as shown in Fig. 4.

Figure 4 – Zipper representing crack opening.

It is appropriate now to consider that to allow the opening an applied force f is necessary to
pull ligaments apart. Furthermore, it should be considered the fact that the energy due to f is
related to the strain energy release rate G. Another possibility would be apply two identical forces
(and opposite direction) f’ and with the same intention to open the zipper. The first procedure is
associated here with the crack extension while the second one is given with respect to crack
widening. When the crack is extended by ∆a (small) for the second case, and the crack is
widened of  ∆r, one could use a comparison. Thus, if  ∆r = 2∆a and lim ∆a, ∆r → 0 the energy
release due to crack widening could be related to the energy release due to crack extension as
follows:
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where U denotes the strain energy of the opened zipper. In order to compute the stress intensity
factor K, one can apply the Irwin’s relation:

f’ f’

a

∆a
f

∆a

  a

 ∆r/2

Case (1) Case (2)

   ∆r/2



E

K
G

2

= (14)

From Eqs. (2), (13) and (14) we obtain:
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For a beam subjected to a bending moment M the corresponding change in energy is given by:
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where ∆r represents the widening of the crack and D is the beam stiffness reduction:
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2.3 Cross section – I

For I-shaped section case, damage effects, the damaged effect into the bar should be verified
following geometric changes during the crack propagation. Thus, one divides a generic I-section
as follows:

Case 1 - Crack located in the bottom girder flanges (Fig. 5):
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Therefore, the damaged section stiffness can evaluate as:
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  Figure 5 - Crack in the
 Bottom Flange.
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Case 2 - Crack located in the web (Fig. 6):
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And the damaged section stiffness is given by:
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If the worked conjugate forces N - M are considered then ηN must be increased. Thus,

for case 1:  0 ≤ a ≤  tf2
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3. ELASTIC PLASTIC STIFFNESS

The derivation of the elastic-plastic stiffness of the cracked element follows the classical
plasticity theory, assuming a simple associated flow and isotropic hardening rule. The
generalized strain rate is then decomposed into elastic and fully plastic parts as (Rice, 1972):

dq = dqe + dqp (24)
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Figure 6-  Crack in the Web.



From Eq. (24) one can express the actual generalized stress tensor increment given in terms
of efforts (dQ = dN, dM). The elastic strain rate will be given by:

dQ = Ψ(dqe - dqp) (25)

where Ψ  represents the elastic compliances and

dqp = dΛ{∂f/∂Q} (26)

is the plastic strain rate defined according to an adopted yield surface f(Q ,αy), being dΛ the
plastic multiplier.

Following the standard plasticity theory, using therefore the flow and hardening rules, one
can find the incremental expression of the plastic multiplier (satisfying also the Kuhn-Tucker
conditions and consistency condition):
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From Eq. (27) together with Eq. (25) the final expression of the actual effort increment can
be found:

dQ = ψepdq                                                          (28)

where ψep is the modified values of the elastic compliances.
For the case of I-section beam (see Fig. 7), it is assumed elastic-perfectly plastic behaviour and
plane cross section after loading.

 

Figure 7 -  Cracked Cross Section (elastic-perfectly plastic behavior).

The bending moment is now evaluated  as:
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It is then considered an approximation assuming an additive decomposition of the elastic and
plastic stiffness, i.e. ke + kp  is the total stiffness of the considered section.

The computer code RAST (Rissausbreitung in Stahlträger), was developed to model the
cracked beam element and to compute its stiffness K (see Fig. 8 and 9 for a flexural stiffness case
where ξ(a) = 0.2 a).

4. DAMAGE LOCALIZATION AND SEVERITY PREDICTION

The crack position and evaluation can be obtained through the closed-form solution of the
equation of motion. The natural frequency of the cracked beam will be modified resulting to:

ω∆ωω −= nf , where ωn is the natural frequency of the uncracked beam, and
4/12

f )]EI/A([ ρωκ = . Taking into account the appropriate boundary conditions and the

displacements equations resulted from the equation of motion, one can find the characteristic
equation of the model, used to obtain the natural frequencies changes:

1
nnn K).(.2 −= βΩωω∆ (31)

where )(n βΩ  is a function that depends only on the crack position. Now, the inverse technique
can be applied to recover the equivalent dimensionless stiffness K from the fracture mechanic
theory. From Eq. (31), one obtains:
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The Equation (32) is applied to find the crack localisation. The code EIGFRISS (Eigenfrequenz
für Rissmodelle) has been implemented to identify the crack location and size (Fig. 10). Results
were compared with numerical solutions computed by using the commercial code ANSYS,
adopting to represent the 3D structure (Deus, 1998).
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Table 1. Displacements at beam center for a rectangular cross section.

H/b L/h A(mm2) I(mm4) σy(kN/mm2) E(kN/mm2) P(kN)
2.00 20.00 20,000.00 0.667x108 0.25 205.00 1.00

ANSYS RAST
a/H 0.0 0.333 0.666 0.0 0.333 0.666
∆ 0.025 0.027 0.039 0.025 0.027 0.042

k* .182x1023 .120x109 .107x108

5. CONCLUDING REMARKS

A FEM – cracked beam is developed aiming to simulate and analyze the case of steel bridge
beam with an open crack (Mode I). In this method the crack is simulated by an equivalent
rotational spring. The stiffness of a degrading spring ideally placed in the correspondence of the
damaging section should be evaluated for any cross section. It has been also derived a simple
procedure to find cracks during bridges inspections; Hence, the natural frequency variation were
used to estimate crack position and size. The numerical algorithms RAST and EIGFRISS were
written to quantify the accuracy of the theoretical damaged models. Regarding advantages and
efficiency the proposed model is really practical, flexible to be applied to others structural
problems and require simple numerical tools to be used effectively. The results obtained show a
remarkable accuracy when compared with other numerical solutions.
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Figure 10- Function  Ω(β) versus position β=x/L for simply supported beam.


